2,458 research outputs found

    1997 - Water Resources Data Report, Water Year 1994-1995

    Get PDF
    California State legislation outlines the objectives and purposes of the Monterey County Water Resources Agency (MCWRA) and states that the MCWRA is to “carry on technical and other necessary investigations, make measurements, collect data, make analyses, studies and inspections pertaining to water supply, water rights, control of flood and storm waters and use of water both within and outside of the agency ...” The MCWRA is responsible for the managing, planning and engineering of the water resources of the Salinas Valley. This report was prepared in part to fulfill that responsibility.https://digitalcommons.csumb.edu/hornbeck_cgb_6_a/1026/thumbnail.jp

    Diel variation in vertical distribution of an offshore ichthyoplankton community off the Oregon coast

    Get PDF
    We examined the diel ver-tical distribution, concentration, and community structure of ichthyoplank-ton from a single station 69 km off the central Oregon coast in the northeast Pacific Ocean. The 74 depth-stratified samples yielded 1571 fish larvae from 20 taxa, representing 11 families, and 128 fish eggs from 11 taxa within nine families. Dominant larval taxa were Sebastes spp. (rockfishes), Stenobra-chius leucopsarus (northern lampfish), Tarletonbeania crenularis (blue lan-ternfish), and Lyopsetta exilis (slender sole), and the dominant egg taxa were Sardinops sagax (Pacific sardine), Icichthys lockingtoni (medusafish), and Chauliodus macouni (Pacific viperfish). Larval concentrations generally increased from the surface to 50 m, then decreased with depth. Larval concentrations were higher at night than during the day, and there was evidence of larval diel vertical migration. Depth stratum was the most important factor explaining variability in larval and egg concentrations

    2011 - California GAMA Special Study - Nitrate Fate and Transport in Salinas Valley - Final Report

    Get PDF
    This study is one in a series of special studies that address the fate and transport of nitrate in basins where groundwater is the main source of water for both irrigation and public drinking water supply under the Groundwater Ambient Monitoring and Assessment (GAMA) Program managed by the California State Water Resources Control Board. The Salinas Valley, known as ‘the salad bowl of the world’, has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use in the valley. The most common water quality issue that arises from this type of intensive agriculture is contamination of groundwater by nitrate from fertilizers. This study focuses on three key aspects of nitrate fate and transport in the Salinas Valley groundwater basin: 1) establishing background conditions for nitrate in a comparatively un‐impacted portion of the basin, 2) examining the fate and transport of nitrate near the recharging Salinas River, and 3) determining the source of nitrate in a highly impacted drinking water well.https://digitalcommons.csumb.edu/hornbeck_cgb_5/1048/thumbnail.jp

    Gateway to Asia

    Get PDF
    Asia’s growing influence in the United States - economically and culturally - is very apparent in the Federal Reserve’s Twelfth District. The nine western states form a geographical gateway to Asia, and because of the close ties, can provide insight into Asian economic and financial developments. The Twelfth District is an attractive destination for trade and investment by Asian companies because of its location. Also, the District’s geographical position has contributed to a long and rich history of Asian immigration into the region.Asia ; Federal Reserve District, 12th ; International trade ; Banks and banking - Asia

    Modeling non-linear rheology of PLLA: comparison of Giesekus and Rolie-Poly constitutive models

    Get PDF
    Rheological models for biobased plastics can assist in predicting optimum processing parameters in industrial forming processes for biobased plastics and their composites such as film blowing, or injection stretch-blow molding in the packaging industry. Mathematical descriptions of polymer behavior during these forming processes are challenging, as they involve highly nonlinear, time-, temperature-, and strain-dependent physical deformation processes in the material, and have not been sufficiently tested against experimental data in those regimes. Therefore, the predictive capability of two polymer models, a classical Giesekus and a physically-based Rolie-Poly, is compared here for extensional and shear rheology data obtained on a poly(L-lactide) (PLLA) across a wide range of strain rates of relevance to those forming processes. Generally, elongational and shear melt flow behavior of PLLA was predicted to a satisfactory degree by both models across a wide range of strain rates (for strain rates 0.05–10.0 s−1), within the strain window up to 1.0. Both models show a better predictive capability for smaller strain rates, and no significant differences between their predictions were found. Hence, as the Giesekus model generally needs a smaller number of parameters, this class of models is more attractive when considering their use in computationally demanding forming simulations of biobased thermoplastics

    Modeling non-linear rheology of PLLA : comparison of Giesekus and Rolie-Poly constitutive models

    Get PDF
    Rheological models for biobased plastics can assist in predicting optimum processing parameters in industrial forming processes for biobased plastics and their composites such as film blowing, or injection stretch-blow molding in the packaging industry. Mathematical descriptions of polymer behavior during these forming processes are challenging, as they involve highly nonlinear, time-, temperature-, and strain-dependent physical deformation processes in the material, and have not been sufficiently tested against experimental data in those regimes. Therefore, the predictive capability of two polymer models, a classical Giesekus and a physically-based Rolie-Poly, is compared here for extensional and shear rheology data obtained on a poly(L-lactide) (PLLA) across a wide range of strain rates of relevance to those forming processes. Generally, elongational and shear melt flow behavior of PLLA was predicted to a satisfactory degree by both models across a wide range of strain rates (for strain rates 0.05–10.0 s−1), within the strain window up to 1.0. Both models show a better predictive capability for smaller strain rates, and no significant differences between their predictions were found. Hence, as the Giesekus model generally needs a smaller number of parameters, this class of models is more attractive when considering their use in computationally demanding forming simulations of biobased thermoplastics

    Cool White Dwarfs Found in the UKIRT Infrared Deep Sky Survey

    Full text link
    We present the results of a search for cool white dwarfs in the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The UKIDSS LAS photometry was paired with the Sloan Digital Sky Survey (SDSS) to identify cool hydrogen-rich white dwarf candidates by their neutral optical colors and blue near-infrared colors, as well as faint Reduced Proper Motion magnitudes. Optical spectroscopy was obtained at Gemini Observatory, and showed the majority of the candidates to be newly identified cool degenerates, with a small number of G- to K-type (sub)dwarf contaminants. Our initial search of 280 deg2 of sky resulted in seven new white dwarfs with effective temperature T_eff ~ 6000 K. The current followup of 1400 deg2 of sky has produced thirteen new white dwarfs. Model fits to the photometry show that seven of the newly identified white dwarfs have 4120 K <= T_eff <= 4480 K, and cooling ages between 7.3 Gyr and 8.7 Gyr; they have 40 km/s <= v_tan <= 85 km/s and are likely to be thick disk 10-11 Gyr-old objects. The other half of the sample has 4610 K <= T_eff <= 5260 K, cooling ages between 4.3 Gyr and 6.9 Gyr, and 60 km/s <= v_tan <= 100 km/s. These are either thin disk remnants with unusually high velocities, or lower-mass remnants of thick disk or halo late-F or G stars.Comment: To appear in ApJ, accepted April 18 2011. 34 pages include 11 Figures and 5 Table
    • 

    corecore